MEMORANDUM

January 14, 1976

To: John Glynn

From: Darrel Anderson

Subject: Marysville Sewage Lagoon Efficiency Survey

On December 9, 1975 Allen Moore and myself performed an efficiency survey at the city of Marysville sewage lagoon. Since there are two influent lines to the lagoon, flows were taken at a 6" Parshall flume (main line) and the other at the 48" trunk line at the northeast corner of the lagoon. No flows were possible at the effluent line so total flow is an average of both influent lines for a 3 hour period. Since there is no chlorination, fecal coliform is high. Five day BOD is 75% and T.S.S. is 70% reduction. The effluent discharges, at mid-channel, into Steamboat slough (Snohomish River) on outgoing tides only.

The overall condition of the dikes are stable with no visible erosion. Lab condition is good, the city is buying new equipment and is in the process of setting it up.

AWM:ee

STP Survey Report Form

Efficiency Study

ity Marysville I	Plant Type Lago	Pop. Served	2	Design
eceiving Water(Ste	amboat Slough)	Perennial X	_ Intermitter	t
ato 9 Dec. 75 Surv	vey Period 1100	- 1630 Survey	Personnel D.	Anderson & Allen Moore
omp. Sampling Free	guendy 1/2 hr.	Sampling Alec	Huot 1000 ml	
eather Conditions	(24 hr) <u>rainy</u>	Are facilitie	es provided f	or complete by-
ass of raw sewage?	Yes <u>x</u>	_No/Frequency of	bypass Non	e
eason for bypass				
as DOE Notified?				
		Operation		
otal flow Avg. = 1	.33 MGD - both pipe	es How measuredmai	n line/6" Parsh	all - 48" trunk/depth
aximum flow		Time of Max.		(inche
inimum flow				
re Cl ₂ No chlorinat				
Main	s) vity m²) le	Field Resul- Influent X. Min. Mean 7.0 13.0 7.6.4 00 450 .5 2.5 3.0	Median 14.0 6.9 600 3.0	fluent (1300-1630 hrs Mean Median 9.0 6.8 550
aboratory No.	75-5611	Effluent 75-561 2	% Reduci	cion lbs/day
-Day BOD ppm DD ppm .S. ppm .T.V.S. ppm .S.S. ppm .V.S.S. ppm .V.S.S. ppm .V.S.S. ppm . (Units) .mdrotrvity .chor/on?)	84 225 406 252 126 30 7.4 490 42	23 125 309 213 38 12 7.2 510	73 45 24 16 70 96	421.50

Laboratory Bacteriological Results

	Time	Col Total Coliform	Fecal	Fecal	Cl ₂ Residual
75-5613	1325	Est 1.9 X 10 ⁵			None
5614	1430	1.6 X 10°	7,600		None
5615	1530		7,200		None
5616	1630	1.6 X 10 ⁵	9,800		None
NO3-M ppi NO2-N ppi		Additional 0.20 <.02	Laboratory	Results	
MH3-N pp		9.6		ar variante managerial state and the morphism behavior and all and the second and the second and the second and	
	mqq M-1da	- 17.	-		
0-P04-P T-P04-P	Charles Street, and the second	3.6 4.6			
Wood Stough	flow diag	Bob Kissinger ram with segrent channel - 6" PARSHALL - Bumps	Flume	and the second and th	influent 98"TRUNK LINE 38 ACRES 9-6" DEEP
1	EFAuent Sepa	Type of Corate Both		Estimate flo	ow contributed by sund water (infiltration)
		Plant Loa	ading Info	rmation	
Annual aver	cage daily	y flow rate(m	ngđ)	Peak flow ra	te(mgd)
		y flow rate(m			te(mgd)

by tidal gate. Effluent sampling began at 1300 hrs.

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

ORIGINAL TO:														
								o		٥	٠	•	•	•
o	•	٥	٥	•	٥	۰	٥	•	۰	•	•	•	•	•
•	٥	٥	۰	•	٥	۰		۰		•	•			•

OLYMPIA LABORATORY

DATA SIMMARY

γY	COPIES TO:
	LAB FILES
Ву_	A. Moore

			DATA SI	JMMARY_				LAB	FILES	
Source MARYSVILLE S	TP	district Strates			ı	Collecte	d By	A. Moo	e	
Date Collected 12-9-7	75									
Log Number: 75 -	5611	12	13	14	15	16				
Station:	INF	eff	1325	1430	1530	1630				
pH	7.4	7.2								
Turbidity (NTU)	42.	17.								
Sp. Conductivity (umhos/cm)	490.	510.								
COD	225.	125.								
BOD (5 day)	84.	23.								
Total Coliform (Col./100ml)			1.9x105	1.6×105	EST 50,000	1.6×105				
Fecal Coliform (Col./100ml)				7,600		8800				
NO3-N (Filtered)		0,20								
NO2-N (Filtered)		4.02								
NH3-N (Unfiltered)		9.6								
T. Kjeldahl-N (Unfiltered)		17.								-
O-PO4-P (Filtered)		3.6								
Total PhosP (Unfiltered)		4.6								
Total Solids	406	309								
Total Non. Vol. Solids	252	213								
Total Suspended Solids	126	38								
Total Sus. Non Vol. Solids	30	12								-
T- Chromium		4.05								
J- Chromium Chlorides	35	46								
Note: All results are in PF	PM (mg/I	unles	s other	wise sp	ecified.	ND is	''None	Detected	<u> </u>	

"\('' is "Less Than" and "\() " is "Greater Than"